Text based Tweet Classification using Ensemble Classifier

نویسندگان

چکیده

There are so many social networking sites available. Tweets have evolved into a crucial tool for gathering people's thoughts, ideas, behaviours and sentiments surrounding particular entities. One of the most intriguing subjects in this context is analyzing sentiment tweets using natural language processing (NLP). Although several methods been created, accuracy effectiveness those analysis yet to be improved. This paper proposes an innovative strategy that takes advantage machine learning lexical dictionaries. classified stacked ensemble model has Naive Bayes as base classifier Logistic Regression meta model. The performance proposed method compared with common models such Naïve sentiment140 dataset, experiments were carried out their was determined. results experiment endorse methodology. exhibits better outcomes attaining score 86%.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic classifier ensemble using classification confidence

How to combine the outputs from base classifiers is a key issue in ensemble learning. This paper presents a dynamic classifier ensemble method termed as DCE-CC. It dynamically selects a subset of classifiers for test samples according to classification confidence. The weights of base classifiers are learned by optimization of margin distribution on the training set, and the ordered aggregation ...

متن کامل

Classifier Ensemble Framework: a Diversity Based Approach

Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...

متن کامل

Fault Detection of Bearings Using a Rule-based Classifier Ensemble and Genetic Algorithm

This paper proposes a reduct construction method based on discernibility matrix simplification. The method works with genetic algorithm. To identify potential problems and prevent complete failure of bearings, a new method based on rule-based classifier ensemble is presented. Genetic algorithm is used for feature reduction. The generated rules of the reducts are used to build the candidate base...

متن کامل

Ensemble Classifier for Eye State Classification using EEG Signals

The growing importance and utilization of measuring brain waves (e.g. EEG signals of eye state) in brain computer interface (BCI) applications highlighted the need for suitable classification methods. In this paper, a comparison between three of wellknown classification methods (i.e. support vector machine (SVM), hidden Markov map (HMM), and radial basis function (RBF)) for EEG based eye state ...

متن کامل

Rough set Based Ensemble Classifier forWeb Page Classification

Combining the results of a number of individually trained classification systems to obtain a more accurate classifier is a widely used technique in pattern recognition. In this article, we have introduced a rough set based meta classifier to classify web pages. The proposed method consists of two parts. In the first part, the output of every individual classifier is considered for constructing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Trends in Computer Science and Smart Technology

سال: 2023

ISSN: ['2582-4104']

DOI: https://doi.org/10.36548/jtcsst.2023.2.003